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57 ABSTRACT
According to one implementation, a pose estimation and
body tracking system includes a computing platform having
a hardware processor and a system memory storing a
software code including a tracking module trained to track
motions. The software code receives a series of images of
motion by a subject, and for each image, uses the tracking
module to determine locations corresponding respectively to
two-dimensional (2D) skeletal landmarks of the subject
based on constraints imposed by features of a hierarchical
skeleton model intersecting at each 2D skeletal landmark.
The software code further uses the tracking module to infer
joint angles of the subject based on the locations and
determine a three-dimensional (3D) pose of the subject
based on the locations and the joint angles, resulting in a
series of 3D poses. The software code outputs a tracking
image corresponding to the motion by the subject based on
the series of 3D poses.
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Fig. 7
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POSE ESTIMATION AND BODY TRACKING
USING AN ARTIFICIAL NEURAL NETWORK

BACKGROUND

[0001] Augmented Reality (AR) and virtual reality (VR)
experiences merge virtual objects or characters with real-
world features in a way that can, in principle, provide a
deeply immersive and powerfully interactive experience.
Nevertheless, despite the relative success of digital enhance-
ment techniques in augmenting many inanimate objects,
digital augmentation of the human body continues to present
substantial technical obstacles. For example, due to the
ambiguities associated with depth projection, as well as the
variations in human body shapes, three-dimensional (3D)
human pose estimation remains a significant challenge.
[0002] In addition to AR and VR applications, accurate
body tracking, in particular hand tracking, is important for
effective use of the human hand as a Human Computer
Interface (HCI). Applications for which use of the human
hand as an HCI may be advantageous or desirable include
hand tracking based character animation, for example. How-
ever, the challenges associated with pose estimation present
significant problems for hand tracking as well. Conse-
quently, there is a need in the art for a fast and accurate pose
estimation and body tracking solution.

SUMMARY

[0003] There are provided systems and methods for per-
forming pose estimation and body tracking using an artificial
neural network, substantially as shown in and/or described
in connection with at least one of the figures, and as set forth
more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG.1 shows a diagram of an exemplary system for
performing pose estimation and body tracking using an
artificial neural network (ANN), according to one imple-
mentation;

[0005] FIG. 2 shows a diagram of an exemplary use case
for the system of FIG. 1 in which hand tracking is per-
formed, according to one implementation;

[0006] FIG. 3 shows an exemplary diagram of a software
code including a tracking module having an ANN trained to
perform pose estimation and suitable for execution by a
hardware processor of the system shown by FIGS. 1 and 2,
according to one implementation;

[0007] FIG. 4 shows an exemplary diagram of a landmark
detector of the tracking module shown in FIG. 3;

[0008] FIG. 5 shows an exemplary diagram of a joint
angle encoder of the tracking module shown in FIG. 3;
[0009] FIG. 6 shows an exemplary diagram of an inverse
kinematics ANN shown in

[0010] FIG. 3; and

[0011] FIG. 7 shows a flowchart presenting an exemplary
method for performing pose estimation and body tracking
using an ANN of the tracking module of FIG. 3, according
to one implementation.

DETAILED DESCRIPTION

[0012] The following description contains specific infor-
mation pertaining to implementations in the present disclo-
sure. One skilled in the art will recognize that the present
disclosure may be implemented in a manner different from
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that specifically discussed herein. The drawings in the
present application and their accompanying detailed
description are directed to merely exemplary implementa-
tions. Unless noted otherwise, like or corresponding ele-
ments among the figures may be indicated by like or
corresponding reference numerals. Moreover, the drawings
and illustrations in the present application are generally not
to scale, and are not intended to correspond to actual relative
dimensions.

[0013] The present application discloses systems and
methods for performing pose estimation and body tracking
using one or more artificial neural networks (ANNs) and in
a manner that overcomes the drawbacks and deficiencies in
the conventional art. It is noted that, as defined in the present
application, an artificial neural network (ANN), or simply
neural network (NN) is a type of machine learning frame-
work in which patterns or learned representations of
observed data are processed using highly connected com-
putational layers that map the relationship between inputs
and outputs. A “deep neural network”, in the context of deep
learning, may refer to a neural network that utilizes multiple
hidden layers between input and output layers, which may
allow for learning based on features not explicitly defined in
raw data. “Online deep learning” may refer to a type of deep
learning in which machine learning models are updated
using incoming data streams, and are designed to progres-
sively improve its performance of a specific task as new data
is received and/or adapt to new patterns of a dynamic
system. As such, various forms of ANNs may be used to
make predictions about new data based on past examples or
“training data”. In various implementations, ANNs may be
utilized to perform image processing or natural-language
processing.

[0014] It is further noted that, as defined in the present
application, a “hierarchical skeleton” or “hierarchical skel-
eton model” refers to a system for describing a collection of
bones, and the joints connecting those bones, according to a
hierarchy in which the location or orientation of a bone or
joint is dependent on the position(s) or orientation(s) of one
or more other bones and joints. This is in contrast to
non-hierarchical skeletons in which individual bones and
joints are treated as being independent of one another.

[0015] FIG. 1 shows a diagram of an exemplary system for
performing pose estimation and body tracking using an
ANN, according to one implementation. As shown in FIG.
1, pose estimation and body tracking system 100 includes
computing platform 102 having hardware processor 104,
system memory 106 implemented as a non-transitory stor-
age device, and display 108. According to the present
exemplary implementation, system memory 106 stores soft-
ware code 110. It is noted that hardware processor 104 may
be implemented as one or more processors for executing
software code 110, such as one or more central processing
units (CPUs) and/or one or more graphics processing units
(GPUs), for example.

[0016] As further shown in FIG. 1, pose estimation and
body tracking system 100 is implemented within a use
environment including cameras 120a and 1205, and subject
124, which may be a human subject or robot, for example,
having body 125 and hands 126a and 1265. Also shown in
FIG. 1 are images 122a and 1225 of motion by subject 124,
as well as tracking image 156 corresponding to the motion
by subject 124.
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[0017] It is noted that in some implementations, pose
estimation and body tracking system 100 may be configured
to perform hand tracking of subject 124, i.e., tracking of
hand motions by subject 124. However, in other implemen-
tations, body 125 of subject 124 may be in motion relative
to cameras 120q and 1205. In those latter implementations,
pose estimation and body tracking system 100 may be
configured to track the motion through space of body 125 of
subject 124, in addition to, or as an alternative to performing
hand tracking of one or both of hands 126a and 1265 of
subject 124.

[0018] It is also noted that, although the present applica-
tion refers to software code 110 as being stored in system
memory 106 for conceptual clarity, more generally, system
memory 106 may take the form of any computer-readable
non-transitory storage medium. The expression “computer-
readable non-transitory storage medium,” as used in the
present application, refers to any medium, excluding a
carrier wave or other transitory signal that provides instruc-
tions to hardware processor 104 of computing platform 102.
Thus, a computer-readable non-transitory medium may cor-
respond to various types of media, such as volatile media
and non-volatile media, for example. Volatile media may
include dynamic memory, such as dynamic random access
memory (dynamic RAM), while non-volatile memory may
include optical, magnetic, or electrostatic storage devices.
Common forms of computer-readable non-transitory media
include, for example, optical discs, RAM, programmable
read-only memory (PROM), erasable PROM (EPROM),
and FLASH memory.

[0019] Although computing platform 102 is shown as a
desktop computer in FIG. 1, that representation is also
provided merely as an example. More generally, computing
platform 102 may be any suitable mobile or stationary
computing device or system that implements data processing
capabilities sufficient to implement the functionality
ascribed to computing platform 102 herein. For example, in
other implementations, computing platform 102 may take
the form of a laptop computer, tablet computer, or smart-
phone, for example.

[0020] In some implementations, subject 124 may be a
user of computing platform 102, and may interact with
software code 110 to produce tracking image 156 corre-
sponding to motion by subject 124. For example, subject
124 may be an animator or performance actor, motion-
capture actor, etc., situated in front of cameras 120a and
1204 while moving one or both of hands 1264 and 1265, and
may have those hand motions applied to an animated
character. Alternatively, subject 124 may use hands 126a
and 1265 to grab the character, pose it as though it were a
physical character, and have that pose applied to the ani-
mated character.

[0021] According to various implementations, tracking
image 156, when generated using software code 110
executed by hardware processor 104, may be stored in
system memory 106 and/or may be copied to non-volatile
storage. Alternatively, or in addition, in some implementa-
tions, tracking image 156 may be rendered on display 108 of
pose estimation and body tracking system 100. Display 108
may be implemented as a liquid crystal display (LCD), a
light-emitting diode (LED) display, an organic light-emit-
ting diode (OLED) display, or another suitable display
screen that performs a physical transformation of signals to
light.
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[0022] FIG. 2 shows a diagram of an exemplary use case
for the system of FIG. 1 in which hand tracking is per-
formed, according to one implementation. FIG. 2 includes
pose estimation and body tracking system 200, cameras
220q and 2205, and hand 226 including exemplary skeletal
landmarks 2284 and 2285 in the form of joint positions, and
exemplary joint angles 238a and 238b. It is noted, that
although joint positions 228a and 2285 and exemplary joint
angles 238a and 2385 correspond to joint information for the
thumb and pinky fingers as shown, the processing of skeletal
landmarks, joint position, and joint angles, according to
various implementations, may be readily applicable to the
other skeletal features of the hand 226, including those of the
remaining fingers, palm, wrist, etc. Also shown in FIG. 2 are
images 222a and 22246 of motion by hand 226, wireless
communication link 250a coupling camera 220a to pose
estimation and body tracking system 200, and wired com-
munication link 2505 coupling camera 2205 to pose esti-
mation and body tracking system 200.

[0023] Pose estimation and body tracking system 200
corresponds in general to pose estimation and body tracking
system 100, in FIG. 1, and those corresponding elements
may share any of the features or functionality attributed to
either corresponding element by the present disclosure. That
is to say, although not shown in FIG. 2, pose estimation and
body tracking system 200 may include features correspond-
ing respectively to computing platform 102 including hard-
ware processor 104, system memory 106 storing software
code 110, and display 108. Moreover, like pose estimation
and body tracking system 200, pose estimation and body
tracking system 100 may be in wireless or wired commu-
nication with cameras 120a and 1205 via links correspond-
ing respectively to wireless communication link 250a and
wired communication link 2505.

[0024] In addition, hand 226, in FIG. 2, corresponds in
general to either or both of hands 1264 and 1265 of subject
124, in FIG. 1. As a result, hands 1264 and 1265 may share
any of the characteristics attributed to hand 226 by the
present disclosure, and vice versa. For example, like hand
226, hands 1264 and 1265 may share features corresponding
respectively to exemplary joint positions or other skeletal
landmarks 228a and 2284, and exemplary joint angles 238a
and 2385.

[0025] Cameras 220a and 2205, and images 222a and
222bh, in FIG. 2, correspond respectively in general to
cameras 120a and 1205, and images 1224 and 1225, in FIG.
1. Consequently, cameras 120a and 1205, and images 122a
and 122h, may share any of the characteristics attributed to
cameras 220q and 2205, and images 222a and 2225, by the
present disclosure, and vice versa. It is noted that although
FIGS. 1 and 2 show two cameras 120a/220a and 1205/2205,
that representation is merely exemplary. In other implemen-
tations, pose estimation and body tracking system 100/200
may use as few as one camera, i.e., camera 120a/220a or
camera 1205/2205, or may use more, or many more than two
cameras.

[0026] It is further noted that in some implementations,
pose estimation and body tracking system 100/200 may be
in communication with one or more of cameras 120a/220a
and 1205/2205 (hereinafter “camera(s) 120a/220a and 1205/
2205”) but may not include camera(s) 120a/220a and 1205/
22056. However, in other implementations, camera(s) 120a/
220a and 1205/2205 may be included as part of pose
estimation and body tracking system 100/200. Moreover,
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although FIGS. 1 and 2 show camera(s) 120a/220a and
1205/2206 as discrete elements, physically separate from
computing platform 102 of pose estimation and body track-
ing system 100/200, in some implementations camera(s)
120a/220a and 1205/22056 may be integrated with comput-
ing platform 102. For example, in implementations in which
computing platform 102 takes the form of a tablet computer
or smartphone, camera(s) 120a/220a and 1205/2205 may be
a still or video camera integrated with the tablet computer or
smartphone.

[0027] As noted above, camera(s) 1204/220a and 1205/
2205 may be still image camera(s) or video camera(s), such
as digital still image or digital video cameras. In some
implementations, camera(s) 120a/220a and 1205/2206 may
be configured to capture color or black and white monocular
digital images as images 122a/222a and 1225/222b. In one
such implementation, camera(s) 120a/220a and 1205/2205
may be red-green-blue (RGB) color camera(s), for example.
Alternatively, or in addition, camera(s) 120a/220a and 1205/
2205 may be depth camera(s), such as RGB-D camera(s). In
other implementations, camera(s) 120a/220a and 1205/2205
may be infrared (IR) camera(s), or may correspond to any
other suitable optical sensor(s) for obtaining images 122a/
222a and 1225/222b of body 125 and/or hand or hands
126a/1265/226 (hereinafter “hand(s) 126a/1265/226) of
subject 124.

[0028] FIG. 3 shows exemplary software code 310 suit-
able for execution by hardware processor 104 of pose
estimation and body tracking system 100/200, in FIGS. 1
and 2, according to one implementation. As shown in FIG.
3, software code 310 may include tracking module 340
having landmark detector 342, inverse kinematics ANN 344,
joint angle encoder 346, and decoder 348. In addition, FIG.
3 shows series of images 322, locations 352 of 2D skeletal
landmarks determined by landmark detector 342 of tracking
module 340, joint angles 338 inferred by joint angle encoder
346 of tracking module 340, 3D poses 354 reconstructed
using tracking module 340, and tracking image 356 gener-
ated using tracking module 340.

[0029] As further shown in FIG. 3, software code 310 can
include training module 332, as well as training database
334 storing body image dataset 336a and dataset 3365 of
corresponding 3D poses with depth information. Software
code 310 corresponds in general to software code 110, in
FIG. 1, and those corresponding features may share any of
the characteristics attributed to either corresponding feature
by the present disclosure. That is to say, like software code
310, software code 110 may include a tracking module
corresponding to tracking module 340, as well as features
corresponding respectively to training module 332, and
training database 334 storing body image dataset 336a and
dataset 3365 of corresponding 3D poses with depth infor-
mation. However, it is noted that although FIG. 3 depicts
training module 332 and training database 334 as being
included in software code 110/310, that representation is
merely exemplary. In other implementations, training mod-
ule 332 and training database 334 may be stored remotely
from software code 110/310 and may be utilized to train
tracking module 340 on a computing platform other than
computing platform 102.

[0030] It is further noted that, in some implementations,
body image dataset 336a stored in training database 334
may include millions of realistically rendered body images,
such as hand images for example. Dataset 3665 stored in
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training database 344 may include 3D poses and depth
information corresponding to the millions of body images
included in body image dataset 336a. Moreover, in some
implementations, body image dataset 3364 and dataset 3365
may be purely synthetic datasets. For example, in the
exemplary use case of hand tracking, the purely synthetic
datasets may comprise of millions of 2D landmark to joint
angle correspondences that are constructed to cover sub-
stantially all practical poses of a human hand. This may
require careful modeling of joint angles, careful modeling of
correlations among joint angles, and careful modeling of
common hand gestures.

[0031] Series of images 322 corresponds in general to
images 122a/222a and 1225/222b, in FIGS. 1 and 2. Thus,
series of images 322 may share any of the characteristics
attributed to corresponding images 122a/222a and 1225/
222b by the present disclosure, and vice versa. In addition,
tracking image 356, in FIG. 3, corresponds in general to
tracking image 156, in FIG. 1, and those corresponding
features may share any of the characteristics attributed to
either feature by the present disclosure. Moreover, locations
352 of 2D skeletal landmarks correspond in general to
skeletal landmarks 228a and 2285, in FIG. 2, while joint
angles 338 inferred by joint angle encoder 346 correspond in
general to exemplary joint angles 238a and 2385.

[0032] FIG. 4 shows an exemplary diagram of a landmark
detector of tracking module 340 in FIG. 3. As shown in FIG.
4, landmark detector 442 includes multi-stage hourglass
network 460 having individual hourglass stages 461(1) to
461(N). In one implementation, for example, N may equal
four. That is to say multi-stage hourglass network 460 may
include four hourglass stages 461(1), 461(2), 461(3), and
461(N=4).

[0033] Also shown in FIG. 4 are 2D mappings 462 gen-
erated by multi-stage hourglass network 460, as well as
skeletal landmark extraction block 464. In addition, FIG. 4
shows series of images 422 and L1 loss 466. Series of
images 422 corresponds in general to images 1224/222a and
1225/222b, in FIGS. 1 and 2, as well as to series of images
322 in FIG. 3. Thus, series of images 422 may share any of
the characteristics attributed to corresponding images 122a/
222a, 1225/222b, and series of images 322 by the present
disclosure, and vice versa.

[0034] Landmark detector 442, in FIG. 4, corresponds in
general to landmark detector 342 of tracking module 340, in
FIG. 3, and those corresponding features may share any of
the characteristics attributed to either feature by the present
disclosure. Thus, although not shown in FIG. 3, landmark
detector 342 may include features corresponding to multi-
stage hourglass network 460, 2D mappings 462 generated by
multi-stage hourglass network 460, and skeletal landmark
extraction block 464.

[0035] For each image of series of images 322/422, multi-
stage hourglass network 460 can be used to predict the
respective locations of skeletal landmarks. For example, in
some implementations in which hand tracking is being
performed, multi-stage hourglass network 460 may be used
to predict the locations of twenty-one landmarks in the hand.
The locations of the skeletal landmarks may be represented
as 2D mappings 462 in the form of heatmaps in the image
plane. Such a heatmap encodes the probability of finding a
skeletal landmark at a particular location in the input image.
Multi-stage hourglass network 460 may output one 2D
mapping for every skeletal landmark. Consequently, in the
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exemplary use case in which hand tracking is performed
using twenty-one skeletal landmarks, multi-stage hourglass
network 460 generates twenty-one 2D mappings 462 for
each image of series of images 322/422.

[0036] It is noted that most conventional neural network
architectures that predict heatmaps are trained with direct
supervision on the predicted heatmaps. The ground truth
heatmaps that are necessary for such supervision are typi-
cally generated by blurring the position of the landmark by
a Gaussian distribution with a user defined standard devia-
tion. In contrast to such approaches, multi-stage hourglass
network 460 is trained without explicit supervision on the
heatmaps. Rather, multi-stage hourglass network 460 out-
puts a set of latent 2D mappings 462 from which sub-pixel
accurate skeletal landmark positions may be extracted by
skeletal landmark extraction block 464 using a spatial soft-
argmax operation.

[0037] Moreover, additional constraints are imposed on
the positions of the skeletal landmarks by jointly regressing
the heatmaps of bones that connect pairs of skeletal land-
marks. The heatmaps of these bones are also unsupervised.
The pairwise multiplication of the heatmaps of two bones
generates the 2D mapping of the location of the skeletal
landmark at their intersection. The position of the skeletal
landmark can be re-extracted from the result of the multi-
plication and is forced to lie at the same location as the
ground truth.

[0038] FIG. 5 shows an exemplary diagram of a joint
angle encoder suitable for use in tracking module 340 in
FIG. 3. Joint angle encoder 546 is configured to learn joint
angle latent space 570. It is noted that joint angles 238a/
238b/338 are represented in tracking module 340 as com-
plex mathematical quantities known as quaternions. Also
shown in FIG. 5 are [.2 loss 572, normalizing layer 574, and
quaternion loss 576. Joint angle encoder 546 corresponds in
general to joint angle encoder 346, in FIG. 3. That is to say,
joint angle encoder 346 may share any of the characteristics
attributed to joint angle encoder 546 by the present disclo-
sure, and vice versa.

[0039] Once 2D skeletal landmarks are detected on each
image of series of images 322/422 using landmark detector
342/442, joint angle encoder 346/546 may be configured to
infer joint angles that can deform a rigged skeleton into a
desired pose. In one implementation, for example, joint
angle encoder 346/546 may take the form of a fully convo-
lutional Wasserstein autoencoder.

[0040] In the exemplary use case of hand tracking, and
using a purely synthetic dataset consisting of over three
million 2D skeletal landmark to joint angle correspon-
dences, joint angle encoder 346/546 can be trained to map
multiple joint angles, such as fifteen joint angles for
example, to low dimensional joint angle latent space 570,
and reconstructs them from there. Because the movement of
fingers is strongly related, it is contemplated that joint angle
encoder 346/546 can learn the correlations between the
various joint angles when it maps them onto joint angle
latent space 570.

[0041] As noted above, the joint angles are represented as
quaternions when providing them as an input to joint angle
encoder 346/546. To ensure that joint angle encoder 346/546
always outputs valid quaternions, joint angle encoder 346/
546 is trained with two losses. The predictions from the final
layer of joint angle encoder 346/546 may be directly super-
vised with a mean square loss (MSE loss 1.2) 572 using
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ground truth quaternions. Additionally, normalization layer
574 can be used to normalize the activations of the final
layer and further supervise them using quaternion loss 576
measuring the difference between the rotations represented
by the two quaternions. It is noted that training joint angle
encoder 346/546 with MSE loss 572 in addition to quater-
nion loss 576 ensures that the direct predictions from joint
angle encoder 346/546 are already close to a quaternion and
helps speed up convergence during training.

[0042] FIG. 6 shows an exemplary diagram of an inverse
kinematics ANN of tracking module 340 in FIG. 3. As
shown in FIG. 6, exemplary inverse kinematics ANN 644
includes fully connected layers 678, each of which may
include five hundred and twelve features, for example. Also
shown in FIG. 6 are input skeletal landmark locations 652,
joint angle latent space 670, L2 loss 672, normalizing layer
674, and quaternion loss 676, as well as decoder 648, which
may be implemented as a fully pre-trained Wasserstein
decoder. Inverse kinematics ANN 644 corresponds in gen-
eral to inverse kinematics ANN 344, in FIG. 3. That is to say,
inverse kinematics ANN 344 may share any of the charac-
teristics attributed to inverse kinematics ANN 644 by the
present disclosure, and vice versa.

[0043] In addition, input skeletal landmark locations 652
correspond in general to locations 352, in FIG. 3, and those
corresponding features may share any of the characteristics
attributed to either corresponding feature by the present
disclosure. Moreover joint angle latent space 670, 1.2 loss
672, normalizing layer 674, and quaternion loss 676 corre-
spond respectively in general to joint angle latent space 570,
L2 loss 572, normalizing layer 574, and quaternion loss 576,
in FIG. 5.

[0044] It is noted that once latent space 570/670 of plau-
sible joint angles has been learnt by joint angle encoder
346/546, fully connected inverse kinematics ANN 344/644
may be trained to regress to latent space 570/670. Joint
angles may be reconstructed using pre-trained decoder 348/
648, whose weights are fixed during the training of inverse
kinematics ANN 344/644. At evaluation time too, inverse
kinematics ANN 344/644 works together with decoder 348/
648 to predict plausible joint angles given locations 352 of
2D skeletal landmarks.

[0045] The functionality of software code 110/310 and
tracking module 340 will be further described by reference
to FIG. 7 in combination with FIGS. 1, 2, and 3. FIG. 7
shows flowchart 780 presenting an exemplary method for
performing pose estimation and body tracking using an
ANN, according to one implementation. With respect to the
method outlined in FIG. 7, it is noted that certain details and
features have been left out of flowchart 780 in order not to
obscure the discussion of the inventive features in the
present application.

[0046] As a preliminary matter, it is noted that tracking
module 340 is trained to track motions prior to its use in
performing the method outlined by flowchart 780. Tracking
module 340 may be trained using software code 110/310,
executed by hardware processor 104, and using training
module 332 and training database 334. As discussed in
greater detail above by reference to FIGS. 4, 5, and 6,
training of tracking module 340 may include providing
individual body images from body image dataset 336a as
training inputs to landmark detector 342 of tracking module
340. Training of tracking module 340 may continue itera-
tively until 3D poses 354 and joint angles 2384/2385/338
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determined using tracking module 340 converge to the 3D
pose and depth information corresponding respectively to
the body images used for training and stored in dataset 3364.
[0047] Referring now to FIG. 7 in combination with FIG.
1 through FIG. 6, flowchart 780 begins with receiving series
of images 322/422 of motion by subject 124 (action 781).
Regarding individual images 122a/222a/1225/222b
included in series of images 322/422, it is noted that each of
images 122a/222a/1225/222b may include multiple digital
RGB, RGB-D, or IR frames, for example, obtained by
camera(s) 120a/220a and 1205/2205, and each capturing a
different pose of subject 124 during motion by subject 124.
Alternatively, series of images 322/422 may include mul-
tiple frames taken from a video clip obtained by camera(s)
120a/220a and 1205/2205.

[0048] For example, in one implementation, series of
images 322/422 may include a sequence of single monocular
images portraying motion by body 125 and/or hand(s)
126a/1265/226 of subject 124. As noted above, in some
implementations, subject 124 may be a human subject or a
robot. Moreover, in some of those implementations, the
motion captured by series of images 322/422 may be or
include a hand motion by the human subject or robot.
[0049] Series of images 322/422 may be received from
camera(s) 120a/220a and 1205/22056 via wireless commu-
nication link 250a and/or wired communication link 2505.
Series of images 322/422 may be received by software code
110/310, executed by hardware processor 104 of computing
platform 102.

[0050] Flowchart 780 continues with, for each image of
series of images 322/422, using tracking module 340 trained
to track motions to determine locations 352 each corre-
sponding respectively to a 2D skeletal landmark of subject
124 based on constraints imposed by features of a hierar-
chical skeleton model intersecting at each 2D skeletal land-
mark (action 782). It is noted that although FIG. 2 depicts
skeletal landmarks 228a and 2285 as joint positions on
hand(s) 126a/1265/226 of subject 124, that representation is
merely exemplary. More generally, skeletal landmarks 228a
and 2285 may correspond to locations of any relevant joint
or other structural or mechanical point of interests of body
125 of subject 124. Thus, in addition to, or as an alternative
to hand joints, skeletal landmarks 228a and 2286 may
correspond to the locations of hip joints, leg joints, foot
joints, shoulder joints, and arm joints of subject 124, as well
as head, neck, and spine joints of subject 124, for example.
[0051] As noted above, tracking module 340 may include
one or more deep neural networks, and may be configured
to receive series of images 322/422 as inputs, and for each
image return locations 352 including a list of 2D skeletal
landmarks corresponding to the pose included in the image,
e.g., joint positions 228a and 2285. Tracking module 340
has been previously trained over a large data set of body
images, i.e., body image dataset 336a, as also noted above,
but may be implemented so as to determine locations 352
including joint positions 228a and 2285 of subject 124 based
on each of images 122a/222a/122b/222b in an automated
process.

[0052] Tracking module 340 may be constrained to deter-
mine locations 352 based on a hierarchical skeleton model
in which 2D skeletal landmarks, such as joint positions, are
dependent on the position of one or more other skeletal
landmarks of subject 124, in contrast to a non-hierarchical
skeleton model in which individual skeletal landmarks are
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treated as independent of one another. Determination of
locations 352 may be performed by software code 110/310,
executed by hardware processor 104 of computing platform
102, and using landmark detector 342/442 of tracking mod-
ule 340, as discussed above by reference to FIG. 4.

[0053] Flowchart 780 continues with, for each image of
series of images 322/422, using tracking module 340 to infer
joint angles 2384/2385/338 of subject 124 based on loca-
tions 352 (action 783). It is noted that although FIG. 2
depicts joint angles 238a and 2385 as joint angles on hand(s)
126a/1265/226 of subject 124, that representation is merely
exemplary. More generally, joint angles 2384/2385/338 may
correspond to the respective orientations of any relevant
joint of body 125 of subject 124. Thus, in addition to, or as
an alternative to hand joints, joint angles 238a/2385/338
may correspond to the orientations of hip joints, leg joints,
foot joints, shoulder joints, and arm joints of subject 124, as
well as head, neck, and spine joints of subject 124.

[0054] Determination of joint angles 2384/2385/338 of 3D
pose 354 may be performed by software code 110/310,
executed by hardware processor 104 of computing platform
102, and using joint angle encoder 346/546 of tracking
module 340 as discussed above by reference to FIG. 5.
Furthermore, like action 782, action 783 may be performed
as an automated process.

[0055] Flowchart 780 continues with, for each image of
series of images 322/422, using tracking module 340 to
reconstruct a 3D pose of subject 124 based on locations 352
and joint angles 2384/2385/338, resulting in series of 3D
poses 354 (action 783). Tracking module 340 may be
configured to reconstruct a 3D pose for each image of series
of images 322/422 using inverse kinematics ANN 344/644
and decoder 348/648, as discussed above by reference to
FIG. 6. That is to say an inverse kinematic analytical or
iterative process may be applied to 2D skeletal landmarks
228a and 2285 included at locations 352 to determine a 3D
pose most closely corresponding to locations 352 and joint
angles 238a/2385/338. As discussed above, reconstruction
of series of 3D poses based 354 on locations 352 and joint
angles 2384/2385/338 may be performed by software code
110/310, executed by hardware processor 104 of computing
platform 102, and using fully connected inverse kinematics
ANN 344/644 and decoder 348/648 of tracking module 340.
Moreover, like actions 782 and 783, action 784 may be
performed as an automated process.

[0056] In some implementations, flowchart 780 can con-
clude with outputting tracking image 156/356 corresponding
to the motion by subject 124 based on series of 3D poses 354
by subject 124 (action 785). In some implementations track-
ing image 156/356 may take the form of per frame tracking
image data corresponding respectively to the input frames of
series of images 322/422. However, in other implementa-
tions, tracking image 156/356 may include a synthesis of
such per frame tracking image data to produce a substan-
tially continuous replication of the motion by subject 124.
[0057] Tracking image 156/356 corresponding to motion
by subject 124 can be advantageously utilized in a variety of
applications. Examples of such applications include aug-
mented reality (AR) applications, virtual reality (VR) appli-
cations, hand tracking based character animation, and
extraction of motion by bipeds or quadrupeds from film
footage, to name a few. Tracking image 156/356 may be
output by software code 110/310, executed by hardware
processor 104 of computing platform 102, and as noted
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above, is based on series of 3D poses 354 reconstructed
using tracking module 340. In some implementations, hard-
ware processor 104 may further execute software code
110/310 to render tracking image 156/356 on display 108.
[0058] Thus, the present application discloses a solution
for performing pose estimation and body tracking using an
ANN in a substantially automated process. The pose esti-
mation and body tracking solutions disclosed by the present
application make at least three significant contributions to
the conventional art. First, a novel and inventive landmark
detector is used, that imposes anatomical constraints on the
position of skeletal landmarks of a subject being tracked.
Second, using a large dataset of body images, a Wasserstein
autoencoder is trained to map joint angles of a rigged hand
or other body parts to a low dimensional latent space from
which plausible 3D poses can be reconstructed. Third, a
fully connected inverse kinematics ANN is introduced that
learns to map positions of skeletal landmarks in an image to
the latent space of the Wasserstein autoencoder, thereby
allowing accurate reconstruction of the pose of the subject in
3D.

[0059] Consequently, the pose estimation and body track-
ing solution disclosed in the present application is more
accurate than conventional approaches to pose estimation
and body tracking using a color camera. In addition, the
present solution enables use of a standard color camera for
image capture, thereby advantageously avoiding any extra
setup requirements. Furthermore, and in contrast to many
conventional pose estimation techniques that merely provide
2D joint locations, the present pose estimation and body
tracking solution advantageously provides 3D pose with
depth, and is able to do so under general lighting conditions.
As a result, the solution disclosed by the present application
provides reliable, fast, accurate, and cost effective pose
estimation and body tracking.

[0060] From the above description it is manifest that
various techniques can be used for implementing the con-
cepts described in the present application without departing
from the scope of those concepts. Moreover, while the
concepts have been described with specific reference to
certain implementations, a person of ordinary skill in the art
would recognize that changes can be made in form and detail
without departing from the scope of those concepts. As such,
the described implementations are to be considered in all
respects as illustrative and not restrictive. It should also be
understood that the present application is not limited to the
particular implementations described herein, but many rear-
rangements, modifications, and substitutions are possible
without departing from the scope of the present disclosure.

What is claimed is:

1. A pose estimation and body tracking system compris-

ing:

a computing platform including a hardware processor and
a system memotry,

a software code stored in the system memory, the software
code including a tracking module trained to track
motions;

the hardware processor configured to execute the software
code to:
to receive a series of images of a motion by a subject;
for each image of the series of images, determine, using

the tracking module, a plurality of locations each
corresponding respectively to a two-dimensional
(2D) skeletal landmark of the subject based on
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constraints imposed by features of a hierarchical
skeleton model intersecting at each 2D skeletal land-
mark;
for each image of the series of images, infer, using the
tracking module, a plurality of joint angles of the
subject based on the plurality of locations;
for each image of the series of images, reconstruct,
using the tracking module, a three-dimensional (3D)
pose of the subject based on the plurality of locations
and the plurality of joint angles, resulting in a series
of 3D poses by the subject; and
output a tracking image corresponding to the motion by
the subject based on the series of 3D poses by the
subject.
2. The pose estimation and body tracking system of claim
1, wherein the hardware processor is further configured to
execute the software code to render the tracking image on a
display.
3. The pose estimation and body tracking system of claim
1, wherein the plurality of joint angles are represented as
quaternions.
4. The pose estimation and body tracking system of claim
1, wherein the tracking module is configured to determine
the series of 3D poses using a fully connected inverse
kinematics artificial neural network (ANN).
5. The pose estimation and body tracking system of claim
1, wherein the subject comprises one of a human subject and
a robot.
6. The pose estimation and body tracking system of claim
5, wherein the motion by the subject comprises a hand
motion by the one of the human subject and the robot.

7. The pose estimation and body tracking system of claim
1, wherein the series of images comprises a series of single
monocular images.

8. The pose estimation and body tracking system of claim
1, further comprising at least one camera configured to
generate the series of images, wherein a body of the subject
is in motion relative to the at least one camera.

9. A method for use by a pose estimation and body
tracking system including a computing platform having a
hardware processor and a system memory storing a software
code including a tracking module trained to track motions,
the method comprising:

receiving, by the software code executed by the hardware
processor, a series of images of a motion by a subject;

for each image of the series of images, determining, by the
software code executed by the hardware processor and
using the tracking module, a plurality of locations each
corresponding respectively to a two-dimensional (2D)
skeletal landmark of the subject based on constraints
imposed by features of a hierarchical skeleton model
intersecting at each 2D skeletal landmark;

for each image of the series of images, inferring, by the
software code executed by the hardware processor and
using the tracking module, a plurality of joint angles of
the subject based on the plurality of 2D locations;

for each image of the series of images, reconstructing, by
the software code executed by the hardware processor
and using the tracking module, a three-dimensional
(3D) pose of the subject based on the plurality of
locations and the plurality of joint angles, resulting in
a series of 3D poses of the subject; and
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outputting, by the software code executed by the hard-
ware processor, a tracking image corresponding to the
motion by the subject based on the series of 3D poses
of the subject.

10. The method of claim 9, further comprising rendering,
by the software code executed by the hardware processor,
the tracking image on a display.

11. The method of claim 9, wherein the plurality of joint
angles are represented as quaternions.

12. The method of claim 9, wherein the tracking module
is configured to determine the series of 3D poses using a
fully connected inverse kinematics artificial neural network
(ANN).

13. The method of claim 9, wherein the subject comprises
one of a human subject and a robot.

14. The method of claim 13, wherein the motion by the
subject comprises a hand motion by the one of the human
subject and the robot.

15. The method of claim 9, wherein the series of images
comprises a series of single monocular images.

16. The method of claim 9, wherein the system further
comprises at least one camera configured to generate the
series of images, and wherein a body of the subject is in
motion relative to the at least one camera.

17. A method comprising:

training an hourglass network of a landmark detector of a

tracking module to determine a plurality of locations
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corresponding respectively to a plurality of two-dimen-
sional (2D) skeletal landmarks of a body image based
on constraints imposed by features of a hierarchical
skeleton model intersecting at each of the plurality of
2D skeletal landmarks;

training a joint angle encoder of the tracking module to
map a plurality of joint angles of a rigged body part
corresponding to the body image to a low dimensional
latent space from which a plurality of plausible three-
dimensional (3D) poses of the body image can be
reconstructed; and

training an inverse kinematics artificial neural network
(ANN) of the tracking module to map the plurality of
locations corresponding respectively to the 2D skeletal
landmarks of the body image to the low dimensional
latent space of the joint angle encoder for accurate
reconstruction of the pose of the body image in 3D.

18. The method of claim 17, wherein the joint angle
encoder is trained using a purely synthetic dataset of skeletal
landmark to joint angle correspondences.

19. The method of claim 17, wherein the plurality of joint
angles are represented as quaternions.

20. The method of claim 17, wherein the joint angle
encoder is implemented as a Wasserstein autoencoder.
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